学习基于事件的运动去模糊
会议:CVPR 2020
地址:https://arxiv.org/abs/2004.05794
摘要
由于模糊过程中丢失了大量的运动信息,从运动模糊图像中恢复清晰的视频序列是一个高度不适定问题。然而,对于基于事件的相机,快速运动可以在高时间率上作为事件被捕捉,从而提出了探索有效解决方案的新机遇。在本文中,我们从基于事件的运动去模糊的序列表述开始,然后说明如何使用新颖的端到端深度架构来实现其优化。所提出的架构是一个卷积循环神经网络,有原则的整合了全局和局部尺度的视觉和时间知识。为了进一步改进(图像的)重建,我们提出了一种可微的定向事件过滤模块,可以有效地从事件流中提取丰富的先验边界。我们在合成的GoPro数据集和新引入的使用DAVIS240C相机捕获的大型数据集上进行了大量的实验。我们提出的方法达到了最先进的重建质量,并更好地处理现实世界的运动模糊。
查看全文 >>