什么是 Label Smoothing Cross Entropy?
Label Smoothing 是一种正则化技术,用于改进分类任务中的交叉熵损失函数。传统的交叉熵损失函数假设目标标签是硬性(hard)的,即每个样本只有一个正确的类别标签,并且该类别的概率为 1,其他类别的概率为 0。然而,这种硬性标签可能会导致模型过拟合训练数据,尤其是在训练数据有限或标签可能存在噪声的情况下。
Label Smoothing 的基本思想是对目标标签进行“平滑”处理,将原本硬性的标签分布替换为一个更柔和的分布。这样可以减少模型对单一类别的过度自信,从而提高模型的泛化能力。
查看全文 >>